Salinity from space (Spatial-temporal variability)

Chris Banks Christine Gommenginger, Meric Srokosz, Eleni Tzortzi, Rafael Catany and Helen Snaith

Contact chris.banks@noc.ac.uk

National Centre for Earth Observation

www.noc.ac.uk

3 narrow beams Resolution: ~100-150 km Global coverage every 7 days

All descending (SMOS) or ascending (Aquarius) data from 30 Aug 201

www.noc.ac.uk

40

Innovative passive interferometry Swath width ~500-700 km Resolution: ~35-50 km Global coverage every 3 days

Contents

- Brief review of previous studies Level 3 cal/val with Argo and Met Office FOAM/NEMO
- Spatial-temporal variability
- Ongoing studies

The aim is for assimilation studies of satellite salinity into Met Office models

Validation Data I – Argo

- Coriolis data centre
- Any profile with one valid measurement of salinity at depth <10 m
- Median salinity of each profile
- Median of 1° grid cells by month
- All near real time QC

www.noc.ac.uk

Why do we need model/satellite data?
Shallowest in situ salinity typically ~ 5-10 m
>3000 floats worldwide, vertical profiles of salinity & temperature every 10 days

Number of Argo profiles in November 2011

www.noc.ac.uk

Validation Data II – FOAM/NEMO Forecasting Ocean Assimilation Model based on Nucleus for European Modelling of the Ocean

- 1/4° resolution daily
- Averaged (mean) to 1° and then monthly
- Assimilates Argo data, as well as satellite SST, SSH and sea ice data

www.noc.ac.uk

The National Centre for Ocean Forecasting

September 2011

Monthly, 1°x1° SMOS: Jan 2010-date Aquarius: Sept 2011-

NATURAL ENVIRONMENT RESEARCH COUNCIL

SPURS study region

SSS FOAM/NEMO Sept 2011

www.noc.ac.uk

Time and space scales

- SMOS / Aquarius
- 10 days / monthly
- 1/4⁰ / 1/2⁰ / 1⁰
- Asc / Desc / Asc & Desc
- Jan 2010 (Sept 2011) Dec 2013
- Comparison with Argo at same space/time scale
 - As before
- (All products now reprocessed)

www.noc.ac.uk

So combined ascending and descending is best?

So combined ascending and descending is best?

SSS1 weighted filtered with span of 3

Is SPURS a suitable area?

Tropical Atlantic Salinity Variability from SMOS

SSS range within a year

- two "poles" of strong seasonal SSS variability in W. & E. basin, N./S. of equator. (range > 1.5 for all years)
- Major rivers contribute to generation of poles
- Out-of-phase SSS seasonal cycles in poles compensate for little variation in whole region (not shown)

See paper by Tzortzi et al., 2013, Tropical Atlantic salinity variability: new insights from SMOS, GRL, v.40

Tropical Cyclones, mixed layer and salinity

Impact of Tropical Cyclones (September 2011) on North Atlantic OSTIA SST

TC cyclones upwell cold water from below the thermocline to the surface

R. Catany (2011) MRes project

Conclusions

- SMOS and Aquarius show differences between SSS data for asc versus SSS for desc passes
 – problematic for assimilation into models
- SMOS calibration in S. Pacific what would spatio-temporal results look like there?
- SMOS impacted by land contamination
- Temporal changes (10 days/month) tend to have greater impact than spatial (1/40/1/20/10)
- Potential for salinity from space in science studies is now being realised

Cesa

→ OCEAN SALINITY SCIENCE AND SALINITY REMOTE SENSING WORKSHOP

26-28 November 2014 | Met Office | Exeter, UK

- A three day workshop focussing on ocean salinity and associated processes in the beautiful city of Exeter. Sessions will incorporate invited keynote speakers and topics will include: - Status of sea surface salinity monitoring from space
- Complimentarities between in situ and satellite observing systems
- Freshwater fluxes and the salinity budget
- Salinity data in ocean models
- Salinity and ocean biology, biogeochemistry and bio-optics
- Salinity and climate change
- Scientific challenges and future priorities

Practical details and registration are available at: www.smos-sos.org/workshop

oceansalinityscience2014.org

Spatio-temporal Scales of SSS from SMOS

Mean zonal (W-E) spatial length scales of SSS

Mean meridional (N-S) spatial length scales of SSS

Temporal decorrelation scales of SSS

Anisotropic spatial scales of SSS in the Atlantic 30° N-30° S, i.e. zonal (W-E direction) length scales are larger than the meridional (N-S direction) Homogenous SSS variations over large lengths that span across the whole basin width

SSS changes persist up to ~3.5 months over most of the basin